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As in the laminar case, the turbulent plane Couette flow is unstable (stable) with 
respect to roll cell instabilities when the weak background angular velocity a i  is 
antiparallel (parallel) to the spanwise mean flow vorticity (-dU/dy)i. The critical 
value of the rotation number Ro, based on 2Q and dU/dy of the corresponding 
laminar flow, was estimated as 0.0002 at a low Reynolds number with fully developed 
turbulence. Direct numerical simulations were performed for Ro = kO.01 and 
compared with earlier results for non-rotating Couette flow. At the low rotation 
rates considered, both senses of rotation damped the turbulence and the number of 
near-wall turbulence-generating events was reduced. The destabilized flow was more 
energetic, but less three-dimensional, than the non-rotating flow. In the destabilized 
case, the two-dimensional roll cells extracted a comparable amount of kinetic energy 
from the mean flow as did the turbulence, thereby decreasing the turbulent kinetic 
energy. The turbulence anisotropy was practically unaffected by weak spanwise 
rotation, while the secondary flow was highly anisotropic due to its inability to 
contract and expand in the streamwise direction. 

1. Introduction 
The study of turbulence in rotating reference frames is motivated by for exam- 

ple geophysical and turbomachinery applications. Investigations of the turbulent 
Reynolds stresses and their anisotropy are essential to improve the basic understand- 
ing and our ability to model the dynamics of such flows. The possible interaction 
between secondary flow and turbulence is hard to measure accurately in physical 
experiments, leaving direct numerical simulations as the appropriate method. 

Turbulent channel flow with system rotation has been investigated both experi- 
mentally and numerically, see for example Johnston, Halleen & Lezius (1972) and 
Kristoffersen & Andersson (1993). Because of the (almost) symmetrical mean velocity 
profile in pressure-driven Poiseuille flow subject to slow system rotation, these inves- 
tigators observed an anticyclonic side and a cyclonic side at which the turbulence was 
destabilized and stabilized, respectively. The background, or system, vorticity is par- 
allel (anti-parallel) to the mean flow vorticity when the flow is cyclonic (anticyclonic). 
On the cyclonic side, the density of turbulence-generating events was reduced. In 
most cases, large-scale roll cells, or secondary vortices, aligned with the streamwise 
direction were found as secondary flows superimposed on the turbulence. The roll 
cells were asymmetric with respect to the centreline and originated on the destabilized 
side. 
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Similar roll cells also occur as a result of linear stability analysis of laminar rotating 
plane Poiseuille flow, see e.g. Alfredsson & Persson (1989). The physical origin of this 
instability is an imbalance between the pressure gradient and the Coriolis acceleration 
in the wall-normal direction. The corresponding stability problem for plane Couette 
flow is mathematically equivalent with the problem of thermal convection between two 
horizontal planes heated from below, see for example Lezius & Johnston (1976), in 
which the most unstable mode has a wavelength about twice the distance between the 
channel walls. The terms stable/unstable have a precise meaning in the case of laminar 
Couette flow. The laminar flow is unstable with respect to roll cell instabilities in the 
case of anticyclonic background vorticity of not too large magnitude, and stable in the 
case of cyclonic background vorticity. In the present contribution, this unambiguous 
definition of stable/unstable system rotation will be adopted, regardless of the effect 
of rotation on the turbulence. 

The secondary flow set up by the Coriolis acceleration instability falls into the 
category known as Prandtl's first kind of secondary flow, cf. Bradshaw (1987), i.e. 
secondary flows caused by body forces (buoyancy, centrifugal, Coriolis). Prandtl's 
second kind of secondary flow is set up by spatial variation of the turbulent stresses 
that generate mean streamwise vorticity. Papavassiliou (1993) studied secondary 
vortices in numerically simulated non-rotating turbulent plane Couette flow, which 
were ascribed to the latter category of secondary flows. Even though the origin 
of these vortices was uncertain, it was found that the cross-sectional component 
of the secondary flow was sustained by correlations between turbulent stresses and 
secondary strain rates, i.e. an energy transfer from smaller to larger scales. 

Smith & Townsend (1982) performed an experimental investigation of Taylor- 
Couette flow at relatively high Taylor numbers. Between the cylinders they observed 
toroidal eddies (secondary flow) with axial wavenumber quite similar to that found 
from stability analysis of the laminar flow. The secondary flow was more energetic 
than the residual turbulence. At the highest Taylor numbers, the toroidal eddies 
apparently became unstable. Watmuff, Witt & Joubert (1985) observed an array 
of vortex-like structures in developing turbulent boundary layers subject to system 
rotation. These large-scale structures were correlated with a spanwise variation of the 
skin friction. The experimental work of Bidokhti & Tritton (1992) on free shear layers 
with background rotation included measurements of the turbulence anisotropy. The 
cross-stream turbulence intensity was observed to increase with destabilizing rotation, 
while the streamwise intensity decreased. The Kelvin-Helmholtz instability roller 
eddies, with spanwise orientation, were destroyed by weak destabilizing rotation. 
Metais et al. (1992), and more recently Cambon et al. (1994) studied the effects of 
system rotation on large-scale vortices, superimposed on turbulence, using linearized 
theory and simulations of transient flows. Both investigations concluded that a slight 
anticyclonic background vorticity is destabilizing, while cyclonic background vorticity 
is stabilizing. 

The main difference between pressure-driven channel flow and shear-driven Couette 
flow in this context is that the mean velocity profile of the latter is antisymmetric, 
i.e. the mean velocity distribution increases monotonically from one wall to the other 
and exhibits an inflection point at the centre. Both sides of the channel become 
either cyclonic or anticyclonic depending on the sense of rotation. This attractive 
feature of the rotating Couette flow facilitates the analysis and interpretation of the 
results. Similarities also exist between a free shear flow such as the turbulent mixing 
layer and the central region of the turbulent Couette flow. For both flows the mean 
velocity profile is inflectional and antisymmetric and the sign of the mean vorticity is 
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FIGURE 1. Sketch of rotating plane Couette flow. - - -, Laminar velocity profile; 

-, turbulent mean velocity profile. 

unchanged. However, the inflection point corresponds to maximum mean vorticity in 
case of the mixing layer, whereas minimum vorticity coincides with the inflectional 
point of the Couette flow. 

The objective of this paper is twofold: first to study the effect of weak system 
rotation in a fully turbulent channel flow where the imposed angular velocity is 
everywhere either parallel or anti-parallel to the mean flow vorticity; second to 
distinguish between turbulence and secondary flow in the decomposition of the 
simulated flow field to enable the study of the mutual influence between the two. 

The decomposition of the flow field is described in the next section. A brief 
overview of the numerical procedure is given in $3. The simulated flow fields are first 
considered as a unidirectional mean flow and deviations thereof ($4.1), and the latter 
are subsequently decomposed into a secondary flow field and turbulent fluctuations 
in $84.2 and 4.3. 

2. Flow field decomposition and governing equations 
Consider plane Couette flow of an incompressible fluid as in figure 1, where the 

parallel walls move in opposite directions with velocity U, in the x-direction so that 
the volume flow is zero; 0’ is the velocity in the wall-normal y-direction and w’ the 
velocity in the spanwise z-direction. The channel is rotated about the z-axis with 
a constant angular velocity Q. The rotation number is here defined as the ratio of 
twice the system angular velocity Q to the shear rate of the laminar Couette flow, 
i.e. Ro = 2Qh/Uw, where h is the half-channel width. Note that the rotation number 
is the inverse of a Rossby number. Because the mean flow vorticity is -dU/dy, 
negative Ro means cyclonic background vorticity, while positive rotation numbers 
denote anticyclonic background vorticity. The bulk Reynolds number is defined as 
Re = U,h/v and the Reynolds number based on wall friction is Re, = u,h/v where 
u, = ( ~ , / p ) ’ / ~  is the friction velocity, p is the density of the fluid and v is the kinematic 
viscosity; z, denotes the magnitude of the wall shear stress. 

The following notation will apply for the averaging and decomposition of the flow 
field. The average of a flow variable C#J with respect to time and x-direction is denoted 
by & (The turbulence is assumed to be homogeneous in the x-direction and time.) 
Other spatial averages are denoted by ( C # J ) q  where the subscript denotes averaging 
along the q-axis. The instantaneous velocity ui can then be decomposed as 

u; = ui + iii + ui, (2.1) 
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1 ui = (&, 
i i i  = u; - ui, 
ui = u; - u; = 24; - (Ui + i i i ) .  

- 

- 

In unidirectional channel flow the mean or background flow is U = (U,O,O), 
whereas ii = (ii,a,fi) represents the secondary flow field, usually occurring as roll 
cells, or as disturbances to the background flow in the case of a laminar stability 
problem. u = (u, 0, w) denotes turbulent fluctuations. This decomposition has been 
applied to curved channel flow by Moser & Moin (1987) and to non-rotating Couette 
flow by Lee & Kim (1991). 

The streamwise momentum equation, (A 1) in the Appendix, averaged over (x, z ) -  
planes and in time, can be integrated once to give 

V -  dU - (iia+UV), = -. 7, 

dY P 
The transport equations for the energy of the secondary flow can be split into two: 

one equation for the energy of the cross-flow H, = ( i(iijiij))z, j = 2,3, and another 
governing the streamwise component ( : 

d2H ( aa aa + --) a f i  a f i  
+V'-V ___ 

dY ax j  ax j  a x j a x j  
+ 02-  + w2- + DW - + - - 2L?(iiv"),, (2.4) 

(-::)z (-E), ( (:: Z)), 
____ = -(u?I),- - - (uuu), - - 
D($i'), _ _  dU d __ 

Dt dY dY 

d2($2)z - v ( E..>z ax j  axj + ( a ~ g ) ~  + (m:) + 2a(iia),. (2.5) +V 
dY 2 

Here, weak system rotation corresponds to the situation where the channel mean 
value of the source term in (2.5) due to mean shear ((-(OB),dU/dy),) is significantly 
larger than the mean source/sink terms ((k2L?(iiC)z)y) in (2.4),(2.5) due to rotation. 
Around the centreline, the rotational and mean shear production can be of similar 
magnitude without conflicting with this argument. In this situation, there will be 
significant production of (iii2)z and negligible production of k",. Because of the two- 
dimensional nature of the secondary flow, the continuity equation can be separated 
into 

aii aa aiit 
ax ay  az - = 0  and - + - = O .  

This implies that there is no pressure-strain redistribution to take energy from (+ i i2 ) z  

and feed it into L,. The secondary flow is not redistributive in the same sense as 
the turbulence, which will strive towards isotropy through the action of the pressure- 
strain correlations. The consequence is that the secondary flow field will be highly 
anisotropic, i.e. approach the one-component limit due to the dominance of (iii'),. 
The anisotropy of the secondary flow will be maintained unless there is significant 
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'indirect redistribution' through nonlinear interactions between secondary flow and 
turbulence. These interactions will be discussed in 54.3. 

The above argument on the tendency to one-component secondary flow is valid in 
the present context because the terms due to rotation (+2L'(Gij),) are small. When 
the background vorticity 2Q approaches the mean vorticity at the centreline in the 
non-rotating case (I - dU/dyI = 0.22), another regime is entered. At these higher 
rotation rates, the rotational terms provide a significant energy transfer from ( in2), 
to lc, as will be discussed in Bech & Andersson (1996). 

Consider the contraction of the transport equation for the (turbulent) Reynolds 
stresses uiuj, (A3) in the Appendix. By averaging in the z-direction we obtain the 
equation for the turbulent kinetic energy k = (.jUi), : 

+F, + F 2  + F 3  +F4 +Fs +F6  

(2.7) 
Note that all the terms labelled as Fn(n = 1,6) occur with opposite signs in either 
(2.4) or (2.5) so that they represent nonlinear interactions between secondary flow 
and turbulence. The present investigation will try to shed some light on the character 
and magnitude of this energy exchange. 

3. Numerical simulations 
The direct numerical simulations (DNS) with system rotation performed here were 

continuations of the non-rotating turbulent plane Couette flow DNS reported by Bech 
et al. (1995). All simulations were run with the ECCLES code developed by Gavrilakis 
et al. (1986) at a Reynolds number Re = 1300. The code applies second-order-accurate 
central differences in space and explicit Adams-Bashforth discretization in time. The 
grid spacing was approximately 10 and 4 viscous, or wall, units v/u, in the x- and 
z-directions, respectively, and the number of grid points was 256 x 70 x 256. A 
non-uniform grid was applied in the y-direction. Because of the fine grid spacing 
applied here, the low-order numerical scheme should yield a reasonable resolution 
of the dynamically important scales of motion. Note that the numerical resolution 
is very similar to that applied in the accurate duct flow DNS by Gavrilakis (1992). 
Because the rotational effects on the turbulent motions were weak for Ro = kO.01, the 
numerical resolution for the simulations at these rotation numbers was approximately 
the same as in the non-rotating case. The computational box was 10nh in the 
streamwise direction and 47ch in the spanwise direction, i.e. relatively large in terms 
of half-channel widths as compared to the simulation by Lee & Kim (1991), and 
somewhat larger, in terms of wall units, than the reference Poiseuille flow simulation 
by Kim, Moin & Moser (1987). 

Effects of numerical resolution and size of computational domain on the numerical 
simulations of plane Couette flow at the present Re were investigated in our previous 
work (Bech & Andersson 1994). While Lee & Kim (1991) found roll cells in 
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simulations of the non-rotating flow, we concluded that this was one of at least two 
possible states in our simulations. Further, we found that the time scale was equally as 
important as the spatial scales for the existence of roll cells (in the non-rotating case), 
and that simulations of the Couette flow should preferably be run for a long time 
interval, in the same geometry, in order to eliminate influences from the (unphysical) 
initial flow field. In our previous work, we concluded that our final simulation of 
the non-rotating case, which did not contain roll cells, was the most consistent and 
reliable. This simulation, which was described and compared with experimental data 
by Bech et aZ. (1995), was used as the initial field for the simulations involving system 
rotation which are reported herein. Data from two cases, with Ro = +O.Ol, will be 
presented in the next section together with data from the earlier simulation without 
rotation. 

The present results are obtained by time-averaging statistically steady flow fields. 
The results from the simulation with Ro = 0.01 were time-averaged for a time 
of approximately 6h/u7 while the simulation with Ro = -0.01 was averaged for 
2h/u7. This difference was motivated by the large-scale secondary vortices present for 
Ro = 0.01. Some of the results for the positive Ro (figures 1Ck13) will be based on 
averages over two flow fields sampled with a time interval of h/u7. 

Prior to the DNS of the rotating turbulent plane Couette flow, linear stability cal- 
culations for the analogous laminar problem were performed. The present calculation 
was in agreement with the results of Lezius & Johnston (1976), and the critical curve 
in the (Re, Ro)-plane is described by Re2Ro(l - Ro) = 106.736. The critical Reynolds 
number is Re = 21, at Ro = 0.5, which is also in agreement with the numerical 
investigation by Speziale & Wilson (1989). They studied a rotating laminar plane 
Couette flow with sidewalls, i.e. in a rectangular channel with one wall moving. 
One of our objectives in solving the laminar stability problem was to calculate the 
spanwise wavelength of the roll cells corresponding to the critical curve, in order to 
choose an appropriate computational domain for the DNS. The diameter of the roll 
cells will obviously be constrained by the height 2h of the computational domain. 
The actually chosen width 4nh then gives room for three pairs of counter-rotating 
cells. This corresponds to a spanwise wavelength of 4nh/3, which is sufficiently close 
to the wavelength 4.04h that emerged from the linear stability analysis. Here, we 
draw parallels with the experimental results on Taylor-Couette flow by Smith & 
Townsend (1982), who observed that the wavelength differed little from the laminar 
to the turbulent case. 

The linear stability analysis was repeated using the mean velocity profile from the 
DNS of non-rotating turbulent Couette flow instead of the linear velocity profile. Our 
objective in carrying out these calculations was to obtain an approximation for the 
critical value of the rotation number, i.e. the lowest value of Ro at which roll cells 
exist in the turbulent plane Couette flow at Re = 1300. The linearized equations result 
in an eigenvalue problem for the spanwise wavenumber of the disturbances with the 
wall-normal disturbance velocity 6 as eigenfunction and Re and Ro as parameters. 
The eigenvalue problem was solved using four-step Runge-Kutta integration and 
a shooting technique. We actually solved the problem of neutral stability, and 
sought the lowest Ro, at Re = 1300, which gave a solution. This approach was 
somewhat related to that of Lezius & Johnston (1976), who introduced averaged 
eddy viscosities deduced from experimental data and constructed a two-layer flow 
model that was introduced in their stability calculations of the rotating Poiseuille flow. 
Their prediction of the critical value of the rotation number seemed to be reasonably 
successful. 
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4. Results 
The critical Ro for onset of roll cell instabilities at Re = 1300 was predicted 

as 0.0002 by linear theory using the mean velocity profile from the non-rotating 
simulation. An additional DNS with Ro = 0.001, from which no quantitative results 
will be presented, was run with the non-rotating flow field as initial conditions. At 
time Qt = 0.0065, large-scale structures of approximately the same length scale as roll 
cells were observed in the secondary flow components. Structures with approximately 
half of this length scale were also seen. Later, at Qt = 0.013, the smaller structures 
were somewhat weakened, while the larger structures were more ordered and intense. 
At this low rotation rate, one would hardly expect strong instabilities, and the 
interpretation of the restricted amount of data was only qualitative. Of course, the 
time advancement should be of the order of one revolution in order to verify the 
onset of the roll cell instability, but unfortunately, such a simulation would have been 
very expensive with regard to computer time. However, the observations indicate that 
roll cells can occur at Ro = 0.001. 

The concept of weak rotation needs some clarification in order to justify the title 
of the present paper. The vorticity ratio S = -2Q/(dU/dy) is a useful parameter in 
order to evaluate the local influence of rotation. In the destabilized case, i.e. with 
Ro = 0.01, the local value of S varied from -0.02 near the wall to -0.27 at the 
centreline. One might therefore regard Ro = 0.01 as more than weak rotation. In 
the present work, however, we consider the direct effect of rotation upon the channel 
average of the production of the various components of the turbulent Reynolds stress 
tensor, whose transport equation is given by (A3). It is therefore appropriate to 
use the y-averaged mean shear, so that 2Q/(dU/dy), = -Ro becomes a suitable 
parameter. The significant value of S at the centreline at Ro = 0.01 was due to 
the mixing property of the roll cells, which reduced the non-dimensional mean shear 
dU/dy from 0.22 in the non-rotating case, to 0.037 at Ro = 0.01. Because of the 
strong mixing, the central region cannot be isolated from the rest of the flow. At 
Ro = 0.01, the ratio of the channel averages of the rotational production (of ( $ ) z )  

to the mean shear production was 0.02. For the stabilizing case with Ro = -0.01, the 
maximum value of S was only 0.03. Based on these observations, the rotation number 
0.01 was considered as low with regard to the influence of the Coriolis acceleration 
on turbulence intensity. However, the rotation rate was supercritical with respect to 
the roll cell instability, and therefore the destabilizing weak rotation had significant 
effects upon the flow field through the presence of the roll cells. As mentioned in 
52, we will investigate higher rotation rates in a subsequent paper. In that work, 
we will show that strong rotation implies large rotational production, leading to a 
fundamental change of the turbulent Reynolds stress anisotropy. 

Both stabilizing (negative, Ro = -0.01) and destabilizing (positive, Ro = 0.01) 
rotation will be considered in the first subsection, whereas the focus of interest in 
the second and third subsections will be the secondary flow and turbulence resulting 
from positive, or anticyclonic, rotation. The kinetic energy of the velocity fluctuations 
will be scaled with u , , ~  (from the simulation without rotation) and mean velocities 
with U,. The y-axis is scaled by the half-channel width h, the walls being located at 
y = +1. In some figures, only one half-channel is shown because the data from the 
two halves have been averaged. 

4.1. Spanwise-averaged statistics 
In this subsection deviations from the mean flow U are called fluctuations and no 
distinction is made between the secondary flow field ii (which is non-zero only in 
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FIGURE 2. Mean velocity at different rotation rates. -, Ro = 0 ;  - - -, Ro = 0.01; - - -, Ro = -0.01. 
Non-dimensionalized with U,. 
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FIGURE 3. Kinetic energy of fluctuations. Legend as in figure 2. 

Non-dimensionalized with u:,~. 

Ro Re, ( k ) ,  ( k + k ) ,  
0 82.2 3.30 3.30 

-0.01 77.8 3.08 3.08 
+0.01 84.7 2.70 4.05 

TABLE 1. Gross flow parameters at different rotation numbers. k = i(Ujui). and k = i(fijfij)l,  
j = 1,2,3. Note that ur,0 was used for non-dimensionalizing and that the values for Re, can be used 
to rescale. In the stable cases (Ro = 0 and -0.01), k = 0 because the two-component decomposition 
was applied. 

the case Ro = 0.01) and the turbulence u. In figure 2, the mean velocity profile of 
the non-rotating Couette flow is compared with the profiles resulting from imposing 
positive and negative rotation. The effect of negative system rotation (Ro = -0.01) 
was to damp the velocity fluctuations slightly as can be readily seen in figure 3. This 
is consistent with a small reduction of the Reynolds number Re,, see table 1. The 
decrease of wall shear stress was counter-balanced by a slightly increased mean shear 
in the central region. The volume-averaged kinetic energy ( k ) ,  of the fluctuations was 
damped by 7%. 

Positive rotation led to substantial increase in ( k  + H), (figure 3) and the gain in 
volume-averaged energy of fluctuations was 23% (in dimensional quantities). The 
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FIGURE 4. Anisotropy invariant map (AIM) for total fluctuations (iii + ui). 

- - -, RO = 0 ;  X, RO = 0.01; 0, RO = -0.01. 

mean velocity in figure 2 exhibits a large flat region resulting from the enhanced 
mixing in the wall-normal y-direction for Ro = 0.01. The wall region with high mean 
shear was enlarged, and it is seen from figure 3 that the increase in kinetic energy 
was most significant in the peak region. The peak was also moved further away from 
the wall. 

Following Lumley (1978), we calculate the invariants 

where aij is the anisotropy tensor of the second moments of the total fluctuations 
ui + iii, i.e. 

Note that a: and a: denote the traces of a$ = aikakj and a; = aikakplj, respectively. 
The anisotropy invariant map (AIM) is shown in figure 4 for all three cases. The data 
are contained in an area spanned by lines corresponding to axisymmetric contraction, 
axisymmetric expansion and the two-component limit (the upper straight line). Each 
data point in the AIM corresponds to distinct separations from the wall. The 
points that touch the two-component limit correspond to positions close to the walls 
(y = kl), where wall-normal velocity fluctuations are damped, while the fluctuations 
near the channel centre ( y  = 0) were closest to isotropy, i.e. to the origin in the AIM. 

Negative rotation did not influence the anisotropy to any discernible degree. By 
rotating the system in the positive sense, a marked change in the invariants was 
recognized around the point where both -11 and I11 attained their maxima. This 
corresponds to the region of maximum kinetic energy in physical space (see figure 3). 
The effect of positive rotation was to make one component of the fluctuations, i.e. 
the streamwise, significantly more intense than the other two, so that the points were 
shifted towards the upper right corner in the AIM. 

4.2. Decomposition into secondary flow and turbulence 
Because of the close similarities between the non-rotating case (which has been 
investigated before) and the case with Ro = -0.01, we will concentrate on the 
case with positive rotation and decompose the flow field so that the turbulence 
fluctuations (ui) are separated from the secondary flow (iii). By subtraction of the 
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FIGURE 5. Sum of mean and secondary velocity ( U  + fi) at five different z positions, Ro = 0.01. 
Bold line: U .  Non-dimensionalized with U,. 

-6.3 -4.2 -2.1 0 2.1 4.2 6.3 
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FIGURE 6. Cross-flow stream function non-dimensionalized with U,h, Ro = 0.01. Contour 
increment = 0.01. Dashed lines: negative. 

turbulent fluctuations, the remaining streamwise velocity U + ii becomes a function of 
y and z ,  see figure 5 .  The velocity profiles at some different spanwise positions show 
how the secondary flow modulates the streamwise velocity component. High shear 
near one wall coincided with low shear near the other wall because of the large-scale 
mixing induced by the roll cells. The wavelength of the secondary velocity was forced 
by the width of the computational box so that it was 4n/3 21 4.19. 

The slightly irregular secondary flow pattern can be recognized in figure 6. Since the 
flow field had been averaged in time and the x-direction, however, the roll cells were 
considered as rather persistent, and the assumption that there existed a secondary 
flow independent of x and t was justified. The secondary motion in the (y,z)-plane 
will be referred to as cross-flow to distinguish it from the streamwise component of 
the secondary flow. 

In figure 7, the normal stresses for the case Ro = 0.01 are visualized. The secondary 
component (a')), was of the same magnitude as the turbulent stress ($)z, while the 
secondary cross-flow was relatively weak. It is seen that (62)z attains its maximum at 
the centreline while (G2)z  exhibits a maximum around y = -0.7, i.e. in accordance 
with roll cells fillins most of the cross-section. In this case, the volume-averaged 
secondary energy ( k ) ,  amounted to 33% of the total kinetic energy ( k  + a),  while 
the turbulent kinetic energy ( k ) ,  was smaller than in the non-rotating case by 18% 
(see table 1). The intensity of the cross-flow, visualized in figure 6, was relatively low. 
However, the weak mixing in the cross-sectional plane associated with the cross-flow 
was sufficient to influence the streamwise velocity profile significantly and to generate 
a substantial spanwise variation of the secondary streamwise velocity. The cross-flow 
was one order of magnitude less intense than the streamwise secondary velocity, so 
that the secondary flow exhibited strong anisotropy, as can be seen from the AIM 
in figure 8, where the anisotropies of the turbulence and secondary flow are treated 
separately. While the turbulence anisotropy invariants were practically the same as in 
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FIGURE 7. Turbulent (thin lines) and secondary (bold - lines) normal stresses for the case Ro = 0.01. 
-, (u2) ,  and ( f i 2 ) 2 ;  - - - , (T)2 and (a'),; - - -, (w2), and (fi2)2. Non-dimensionalized with u&. 
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FIGURE 8. AIM for turbulence and secondary flow. 

- - -, Ro = 0; x, Ro = 0.01, secondary; 0, Ro = 0.01, turbulent. 

the non-rotating case, the secondary flow approached the one-component limit due 
to the dominance of ( iii2)z. 

The variation of the shear stresses -(lZ)z and -(iii?), in the case with Ro = 0.01 
is visualized in figure 9. From (2.3), it is known that the sum of the viscous, 
turbulent and secondary shear stresses is constant and equal to the wall shear stress. 
Because of this, the turbulent shear stresses in figure 9 exhibit their maxima at the 
centreline. The difference between the non-rotating and the stabilized case is seen 
to be rather small and in accordance with the slightly reduced turbulent kinetic 
energy for Ro = -0.01 which was observed in figure 3. For these two cases, the sum 
-( (uV)z + (iifi),) is plotted?. In the destabilized case, however, the two components are 
plotted separately. The most important inference from this figure is that the turbulent 
and secondary shear stresses are of approximately the same magnitude at Ro = 0.01. 
The secondary component also exhibited a maximum away from the centreline and 
was more than twice as large as the turbulent shear stress close to the walls. 

The spanwise spacing between low-speed streaks in near-wall flows has been 
measured from both physical and numerical experiments in the non-rotating case, 

t In the cases where no roll cells were observed, there was a small non-zero contribution to the 
secondary quantities due to the finite extent of the computational box and the finite sampling time, 
cf. the discussion at the beginning of $5. 
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Y 
FIGURE 9. Shear stresses at three different rotation rates: -, Ro = 0 ;  - - -, Ro = 0.01; - - -, 
Ro = -0.01. For the case Ro = 0.01, both turbulent shear stress -(uV)z (thin line) and secondary 
shear stress - ( f i5)z  (bold line) are shown. For the other rotation rates, only the total shear stresses 
are shown. Non-dimensionalized with uz. 

and there seems to be general agreement that the spacing 1+, in wall units, should 
be close to 100. Kristoffersen & Anderson (1993) calculated il+ on the destabilized 
side of their simulated rotating Poiseuille flow, and found a significant decrease, 
except in the case with rotation number 0.01, i.e. sub-critical with respect to roll cell 
instabilities. In the present, destabilized case with Ro = 0.01, an increase of around 
10% was observed in A+, i.e. the opposite of what one could expect from observations 
of rotating Poiseuille flow. Here, 1 was calculated from the two-point correlation 
RUU(r,)  displayed in figure 10. The half-streak spacing was defined as the distance 
to the first minimum in the correlation curve, and made non-dimensional with v/u,. 
Because u, is larger in the destabilized case than for Ro = 0, the actual increase in A 
is somewhat smaller than 10%. There were some uncertainties in the present results 
due to the fact that 1 was not a smooth function of the distance to the nearest wall. 
We used an average in the interval 2 < y+ < 10, where y+ = (1 - IyI)Re,, but the 
variation of 1 in this interval was of the same order as the variation between the 
different rotation rates. Hence, our results on the streak spacing must be considered 
as somewhat uncertain. il was only about 30% of the spanwise wavelength of the roll 
cells, so that the slight increase in il was not some kind of resonance phenomenon. In 
figure 10, two correlation curves are given in the destabilized case: a thin curve for 
the turbulent component and a thick one for the sum of the secondary and turbulent 
components of the streamwise velocity. In the latter case, the spanwise variation 
of the secondary flow with its wavelength slightly above four is dominant. In the 
stabilized case with Ro = -0.01, I+ showed a slight increase (around 5%)  compared 
to the non-rotating case. 

A more quantitative measure of the activity of turbulence-generating events can 
be found in figure 11, where the frequency of occurrence of VISA events is plotted 
versus the variable averaging interval. A VISA (Variable Interval Space Averaging) 
event occurs when the local variance of u over an interval of length L+ exceeds the 
overall variance. Such events take the shape of curved internal shear layers and are 
assumed to be important for the transfer of energy from mean flow to turbulence. 
In figure 11, results for Ro = kO.01 have been compared with both experiments and 
simulation data at Ro = 0, using Taylor's hypothesis and the propagation velocity of 
the VISA events at Ro = 0 to compare these results, see Bech et al. (1995) for details. 
The frequency of turbulence-generating events was reduced due to system rotation 
in accordance with the reduction of turbulent kinetic energy ( k ) ,  shown in table 1. 
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FIGURE 10. Two-point correlations for the velocity component u in the lateral direction z for three 
different Ro. Legend as in figure 9. For Ro = 0.01, the bold line shows the correlation for the sum 
u + 5. 

I I I I I l l 1 1  I I I I l l l l  

lo-* 1 
L 

0 . 
X 

. 
I I I I I I l l  I I I I 1 1 1 1  

10 100 

T+ 

FIGURE 11. Frequency of occurrence of positive VISA events and VITA events. Inner scaling. 0, 
Experiments; 0, DNS; data for Ro = 0, see Bech et al. (1995); 0, Ro = +0.01; x, Ro = -0.01. The 
results for Ro = -0.01 are based on one flow field, i.e. only spatial averaging. 

The most significant reduction occurred in the case where secondary roll cells were a 
predominant feature of the flow, i.e. for Ro = 0.01. 

4.3. Transfer of energy between secondary $ow and turbulence 
The possible exchange of energy between the turbulence and the secondary flow will 
now be investigated, and we therefore consider the case Ro = 0.01 only. First, note 
that the channel average of the sink/source terms f252(fifi), due to rotation were only 
about 2% of the source term in (2.5) due to mean shear, = -(Rfi),dU/dy. Thus, 
even if the magnitude of the local vorticity ratio S = -2Q/(dU/dy) became as high 
as 0.27 at the centreline, the direct effect of system rotation on turbulence was weak, 
as discussed in the beginning of this section. It is therefore of interest to consider 
other source/sink terms in the equations for the components of the Reynolds stress 
tensor. In this subsection, our focus will be on the role of the secondary production 
terms i), together with the conventional production term P = -(m),dU/dy , see 
(2.7), and the secondary production P of (2.5). 

From the turbulent and secondary Reynolds shear stresses in figure 9, it can be 
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FIGURE 12. Various production _and dissyatioc-rate terms. All terms are shown positive for com- 
parative purposes. -, P ;  - - -, P ;  - - -, P I ;  0, Pz; x, El l  = v ( a f i / d x j a f i / a x j ) , .  Non-dimensionalized 
with u&/h. 

deduced that P and p were of approximately the same magnitude. The actual 
value of the ratio ( p ) y / ( P ) y  was 0.52. This is in accordance with the ratio between 

and (G)z (see figure 7). Because there was no inter-component energy transfer 
between ( + f i 2 ) ,  and k,., except the weak rotational redistribution through f2Q((n5),, 
the energy-in the (ifi2),-component must either be dissipated in the secondary flow 
or transferred to the turbulence through the terms and p2. Figure 12 shows some 
of the production terms. The viscous dissipation-rate term of (2.5) is also shown. The 
main sink term for ( i n 2 ) ,  was -p2. The ratio (p2)y/(fs)y was 0.49, i.e. approximately 
half the energy transfer from the mean flow to the secondary flow was passed on to the 
turbulence, while about 40% was dissipated in the secondary motion in the vicinity of 
the walls. The net effect of -PI was one order of magnitude smaller than that of -p2. 

From the point of view of (2.7), the two most important source terms for the 
turbulence were the primary production P and the secondary production p2. By 
v-averaging, it was found that the latter was about 25% of the former. p2 was 
the largest production term in the central region of the flow. Note that the primary 
production was significantly reduced by destabilizing rotation because the mean shear 
was reduced. The damping of turbulence in the central region can then be considered 
as a result of the flattening of the mean velocity profile, which again was a result of 
the cross-flow mixing. However, the secondary streamwise motion, which was also 
induced by the cross-flow, prevented annihilation of the turbulence in the central 
region by transferring energy through pz. 

As a consequence of the weak cross-flow and therefore the secondary shear rates, 
the energy transfer between k,  and k was small. The terms -p,, ( n  = 3 ,6 )  are displayed 
in figure 13(a). The magnitudes were only a few percent of p2. In order to deduce 
the net energy transfer to the cross-flow, the sum C",=, -p, was plotted together 
with the rotational production term of (2.4) in figure 13(b). The energy transfer 
between cross-flow and turbulence changed sign about halfway between the wall and 
the centreline, while the rotational term acted as a source all across the channel. 
This implies that the turbulence supplied energy to the cross-flow in the near-wall 
region. In this part of the flow, the rotational term -2Q(f i5) ,  was weak and the 
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FIGURE 13. (a) Secondary production terms. -, -&; - - -, -pd; - - -, -p5; ..., -p6. (b)  Rotational 
and secondary production terms of (2.4). -, -2Q(fiij)z; - - -,c:=, -pn. Same scaling as in figure 12. 

viscous stresses damped the secondary motion. In addition, the primary turbulence 
production reached its peak value here. In the central region of the flow, the ‘cascade’ 
behaviour was retained, i.e. energy from the cross-flow was fed into the turbulence. By 
averaging in the y-direction, however, a slight transfer from turbulence to cross-flow 
was observed, and this transfer was larger than the rotational effect. 

5. Discussion and conclusions 
First, a remark should be made about the decomposition of the flow field. The 

filter applied to separate the velocity (and pressure) fluctuations into a secondary 
component and turbulence was somewhat influenced by the geometry of the compu- 
tational domain. Because the streamwise extent of the computational domain was 
finite, i.e. about 2500 wall units, the secondary flow inevitably contained some small 
contributions from the near-wall low-speed streaks with a typical length scale of 
1000 wall units. In Couette flow, the elongated regions of high and low streamwise 
momentum observed in the central region of the non-rotating flow, i.e. the largest 
scales of turbulence, were even more likely to contribute to the secondary component. 
In the present non-rotating case, roughly 8% of the turbulent kinetic energy was 
filtered out as secondary flow. Note, however, that in the presentation of the results, 
this 8% was counted as turbulence, and not as secondary flow. In the results given 
here, only the destabilized flow field (Ro = 0.01), where actual roll cells were observed, 
was subject to the three-component filter. In that case, it therefore seems reasonable 
to estimate that the contribution to the kinetic energy from the secondary flow was 
between 20% and 30%, and not exactly 33% as stated in the previous section. The 
important conclusion of this paper, namely that the turbulence was damped in the 
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destabilized case, is still significant. It should also be stressed that the total kinetic 
energy, as given in table 1, is independent of the decomposition applied. 

The present results for weakly rotating plane Couette flow showed that the turbu- 
lence was damped regardless of the sense of rotation. Negative, or cyclonic, rotation, 
which is stabilizing in the case of laminar flow, was associated with a modest damping 
of the turbulent fluctuations. The effect of weak cyclonic rotation (Ro = -0.01) was 
considered as a perturbation of the mean statistics similar to a slight decrease in 
Reynolds number. A slight decrease in the turbulence intensity was observed. Follow- 
ing the line of argument presented by Kristoffersen & Andersson (1993), we consider 
the 11-, 22- and 12-components of (A 3). With weak stabilizing rotation, the vorticity 
ratio S is small everywhere in the channel, and the mean shear production terms are 
substantially larger than the rotational production terms. Thus the rotational gener- 
ation term -252(E), is only important for the 22-component, where no mean shear 
generation is present, and it is thus seen that negative rotation tends to damp (v”),. 
This results in less mean shear generation of -(E)z through the term (7)zdU/dy. 
To close the circle of arguments, the mean shear production of (?)z decreases when 

is damped, thus resulting in lower turbulent kinetic energy. Owing to the in- 
creased complexity caused by the presence of roll cells in the destabilized case, this type 
of argument is not applicable in the case with Ro = 0.01, which will be discussed below. 

Positive, or anticyclonic, rotation caused counter-rotating streamwise-oriented roll 
cells to develop analogous to what is found in the laminar case. The rather steady and 
persistent secondary flow caused strong mixing in the wall-normal direction. Owing 
to this efficient mixing, the mean velocity profile exhibited a large region of low shear 
around the centreline. The secondary cross-flow (5,G) was rather weak while the 
streamwise component of the secondary flow was about as energetic as the turbulence 
fluctuations. The turbu1er.t Couette flow seems to be more unstable with respect to roll 
cell instabilities than the turbulent Poiseuille flow. The two flows respond differently 
to system rotation due to the symmetry/antisymmetry of their mean velocity profiles. 
Kristoffersen & Andersson (1993) observed that (2 + f i 2 ) ,  increased by almost 50% 
when the rotation number was increased from 0.01 to 0.10. This substantial growth 
was probably mainly due to the onset of roll cell instabilities. At Reynolds number 
Re = 2900 the critical rotation number was in the interval (0.01,0.05). Lezius & 
Johnston (1976) calculated a critical value of 0.02, also for rotating Poiseuille flow, by 
using linear theory and empirical correlations, while Johnston et al. (1972) observed 
that the critical rotation number was less than 0.04. 

No direct measure of the critical Ro was obtainable from the present Couette 
flow simulations. However, linear analysis using the mean velocity profile from the 
non-rotating simulation gave a stability limit for onset of roll cell instabilities. The 
critical rotation number was estimated as Ro = 0.0002 at the present Re. This was 
consistent with DNS that indicated that roll cells could exist at Ro below 0.001. 
But because the large-scale velocity fluctuations in non-rotating Couette flow bear 
some resemblance to roll cells, this observation is not conclusive. At low rotation 
rates, the turbulent fluctuations will be more intense than eventual roll cells, and the 
linearization applied in the stability problem is indeed very approximate. However, 
we expect the critical Ro to be lower in the Couette flow than in the Poiseuille flow 
owing to the antisymmetric velocity profile of the former, but this point should be 
subject to further investigations. In fact, roll cell instabilities have also been observed 
in DNS of non-rotating plane Couette flow, see Lee & Kim (1991), Kristoffersen, 
Bech & Andersson (1993) and Papavassiliou (1993). 



Secondary flow in weakly rotating turbulent plane Couette flow 21 1 

Another difference between Poiseuille and Couette flows was associated with the 
topology of the roll cells. In rotating or slightly curved Poiseuille flow, as simulated 
by Kristoffersen & Andersson (1993) and Moser & Moin (1987), respectively, well- 
defined pairs of counter-rotating vortices of the Gortler type were observed. These 
pairs were asymmetric with respect to the centreline and caused substantial and 
localized momentum transport away from the pressure side and a more diffuse flow 
from the suction side back to the pressure side. In figure 6,  the roll cells are seen to 
be symmetric about y = 0 because both sides were either pressure or suction sides in 
the rotating Couette flow. Obviously, the antisymmetry of the mean velocity profile 
makes the symmetry of the roll cell pattern in rotating Couette flow qualitatively 
different from that observed in pressure-driven flow. In fact, complete arbitrariness 
exists concerning with which of its nearest neighbours a particular cell forms a pair. 
We will return to the study of the roll cells in a subsequent work, where flow structures 
and vorticity will be examined at higher rotation rates. 

The mean flow supplied energy to the secondary flow and the turbulence, the ratio 
of these energy transfers being (fi5)z/(%),. With destabilizing rotation, the energy 
loss from the mean flow, as represented by the last term in (A2), decreased by about 
10% as compared to the non-rotating case. This decrease took place in the region 
around the centreline because the mean shear rate in this area was reduced due to 
the mixing induced by the roll cells, while there was an increase in the mean shear 
close to the walls. The substantial transfer of energy to the secondary flow therefore 
implied a reduced transfer to the turbulence as compared to the non-rotating case in 
which (fio), was practically absent. As has been discussed previously, the wall friction 
increased in the destabilized case. Because this implied an increase in the work done 
by the solid walls on the fluid, and at the same time, the energy transfer to the 
fluctuating field was reduced, the dissipation rate of the mean field, i.e. v(dU/dy)2 in 
(A 2), exhibited a significant increase. 

In summary, the energy transfer between the flow components can be described as 
follows. The energy transfer from the mean flow to the secondary flow was directed 
into the (ifi2)z component. The exchange between kc and (if i2)z due to rotational 
source and sink terms was marginal, i.e. about 4% of the secondary production B. 
Because the secondary flow is independent of the streamwise position, no pressure- 
strain redistribution is present in the transport equations (2.4) and (2.5). The result 
is a substantial anisotropy, towards one-componentality, of the secondary flow. The 
anisotropy was somewhat reduced by a significant energy transfer from ( i G 2 ) ,  to the 
turbulent kinetic energy k through the term & which represents a correlation between 
the wall-normal secondary vorticity 6jY = %/dz  and the ‘cross-flow’ Reynolds shear- 
stress -* (note that (-*), = 0). This transfer was approximately 25% of the 
primary turbulence production P .  There was modest ‘backscattering’ of energy from 
turbulence to cross-flow due to the terms EL, Pn. The primary turbulence production 
was significantly reduced due to the onset of the roll cell instability. 

The resulting damping of turbulence in the case of destabilizing rotation is some- 
what surprising. Johnston et al. (1972) found a reduction of the burst rate on the 
stabilized side of rotating Poiseuille flow and concluded that no evidence of increase 
in the burst activity was observed on the destabilized side, unlike what they expected 
to find. (Note that the bursting processes are solely responsible for production of 
turbulent kinetic energy and are not connected to secondary flow, see for example 
Kim, Kline & Reynolds 1971.) The present results show that the burst rate was 
somewhat reduced with stabilizing rotation, probably because the stabilizing effect 
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acts on both mean flow and turbulence in accordance with former observations. The 
streak spacing was somewhat increased for Ro = -0.01, but only in non-dimensional 
quantities. There was no increase of the dimensional streak spacing, and the uncer- 
tainties in the results prevent any firm conclusions being drawn. The results for the 
frequency of VISA events were, however, more significant. The reduction in the burst 
frequency was accompanied by decreasing turbulent kinetic energy and wall shear 
stress in the stabilizing case. However, the reduction in the burst rate was even more 
pronounced with destabilizing rotation. This reduction cannot be ascribed directly to 
the Coriolis effect on turbulence, but must be caused by the secondary flow, as pro- 
posed by Johnston et al. In the case of Couette flow, the production of turbulence is 
reduced by the presence of a significant secondary flow component, so that a smaller 
amount of the kinetic energy in the near-wall region is associated with bursting and 
a greater fraction of energy is associated with a large-scale spanwise variation of the 
streamwise velocity set up by the roll cells. Note also that the bursting frequency 
decreased while the wall friction increased at Ro = 0.01. This was because the roll 
cells made a significant contribution to the wall shear stress, which is quite interesting 
from a turbulence control viewpoint. It is possible that the two-dimensionality of 
the roll cells suppresses the development of inclined internal shear layers which are 
typical of the VISA events detected here. Johnston et al. suggested that roll cells 
inhibit the streak bursting process, i.e. that the low-speed streaks were convected 
away from the high-shear region before they burst. This is not fully in accordance 
with the present results because the streak spacing was observed to increase, leading 
to a reduced streak density. Thus, the reduced burst frequency was not necessarily 
a result of the influence of the roll cells on the bursting process itself, but rather 
on the formation of streaks. One may, for instance, anticipate that the spanwise 
regularity and large length scale imposed on the near-wall turbulence by the roll 
cells suppress the formation of more or less randomly occurring streaks with smaller 
length scales. In this way, formation of roll cells is a somewhat peculiar turbulence 
control mechanism that increases both mixing and wall shear stress. 

While the secondary flow was highly anisotropic, the anisotropy of the turbu- 
lence was essentially the same in all three cases. Even though the frequency of 
turbulence-generating events was reduced, the structure of the turbulence was prac- 
tically unaffected by the secondary flow. The concept of stabilizing or destabilizing 
system rotation has been shown to be rather ambiguous since in the case in which 
the background flow was destabilized, the turbulence was damped. 

This work has received support from The Research Council of Norway (Programme 
for Supercomputing) through a grant of computing time. Professor Henrik Alfredsson, 
Stockholm, made an instructive comment on the VISA events. The referees are 
acknowledged for valuable comments and suggestions for improvements. 

Appendix. Transport equations 

z-wise rotation can be written 
The momentum equation for an incompressible fluid in a coordinate system with 

The 'centrifugal' acceleration has been included in the pressure term, see for example 
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Greenspan (1968). The transport equation of the mean flow kinetic energy K = U2 
is 

DK - v- d2K - v ($) 2 d  - dy (u  (uv + na),) + (uv + aa), -. dU (A2) -- 
Dt dy2 dY 

The equation for the (turbulent) Reynolds stresses, averaged in the x-direction and 
time t ,  can be written 
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